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Outline

Aim: extend the linear social interactions model to a non-linear
version to explore ‘identification by functional form’ and the
potential identifying power of multiplicity
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Discrete Choice

Recap

I In Lecture 4, we covered the reflection problem in the
context of identification results for linear simultaneous
equation models

I In Lecture 5, we discussed how more complicated
simultaneous models might result in additional
identification challenges arising from incompleteness

I Today, we look at how multiple equilibria can provide
identifying power in some contexts

I This will provide insights into ‘identification by nonlinearity’
or ‘identification by functional form’
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Discrete Choice

Social Interactions

I Linear models of social interaction typically have a unique
equilibrium and are complete

I However, most micro-founded models suggest more
complicated non-linear functional forms

I Consider identification for Brock and Durlaf’s (2001) model
of social interactions

I ‘Large’ game of incomplete information
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Discrete Choice

Discrete Choice

I Many of the contexts in which peer effects are studied have
discrete outcomes:

I Smoke / Don’t Smoke

I Get Pregnant / Don’t Get Pregnant

I Play Truant / Don’t Play Truant

I &c

I (Many studies on the role of peer effects and youth choice)
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Discrete Choice

Discrete Choice

I Brock & Durlauf (2001, 2007): leading framework for
studying social interactions in discrete choice
environments

I General framework for capturing many types of social
interactions as well as characterising equilibrium (and
multiple equilibria) and identification

I Simplify the framework here to show how the discrete
choice environment allows one to separately identify
endogenous and endogenous peer effects
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Discrete Choice

Peer Effects: Recap

I In Lecture 4, we looked at a very simple example of a peer
effects model

s1g = θ0 + θ1b1g + θ2s2g + θ3b2g + u1g

s2g = θ0 + θ1b2g + θ2s1g + θ3b1g + u2g
(1)

I θ2: endogenous effects

I θ3: exogenous effects

I As we saw these effects are not generally separately
identified in the linear framework
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Discrete Choice

Example
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Discrete Choice

Example

I Imagine we are interested in modelling the decision of
university students of whether to go and protest in various
towns/cities

I Let yi = {0,1} be an indicator of whether engage in a
protest at least once in the last 2 months

I Suppose the propensity for demonstrating is a function of:
I the student’s characteristics,
I the (exogenous) characteristics of the student’s classmates
I their parent’s demographic characteristics
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Discrete Choice

Example

I Endogenous peer effect: the influence on peers decision to
protest on an individual’s own propensity to protest

I Exogenous peer characteristics: the family background of
the other students in the peer group

I big : the political leaning of the parents of student i in
university g

I b¬i,g : the mean political leaning of the parents of students
in i ’s peer group
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Discrete Choice

Example

I Let the peer group be of size Ng and the mean action of i ’s
peers is:

mig =
1

Ng − 1

∑
j 6=i

yj (2)
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Discrete Choice

Utility

I The utility for action yi is given as:

Vi(yi) = ui(yi) + S(yi ,E(mig)) + εi(yi) (3)

where:
I ui(yi) is the private component of utility

I S(yi ,E(mig)) is the impact on utility of the mean action
taken by others in the peer group

I εi(yi) is an idiosyncratic component
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Discrete Choice

Utility

Vi(yi) = ui(yi) + S(yi ,E(mig)) + εi(yi) (4)

I Note that the peer interaction term is expressed in term’s
of i ’s expectations of the actions of her peers

I BD discuss the dynamics of expectation formation and
study equilibrium properties for the case of self-consistent,
rational expectations
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Discrete Choice

Utility

I Let the private component of utility be dependent on an
individual’s own characteristics and on the exogenous
characteristics of the peer group

ui(yi) = yi
(
θ0 + θ1big + θ3b¬i,g

)
(5)

I Let the peer interaction component of utility be:

S(yi ,E(mig)) = yiθ2E(mig)

= yiθ2s¬i,g
(6)
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Discrete Choice

Utility

I The utility from choosing yi is then:

Vi(yi) = yi
(
θ0 + θ1big + θ2s¬i,g + θ3b¬i,g

)
+ εi(yi) (7)

I Choose to protest if:

θ0 + θ1big + θ2s¬i,g + θ3b¬i,g + εi1 > εi2 (8)

Abi Adams

TBEA



Discrete Choice

Utility

I The probability individual i goes out to protest is then:

Pr(yi = 1) = Pr (Vi(yi = 1) > Vi(yi = 0))
s1g = Pr

(
εi2 < θ0 + θ1big + θ2s¬i,g + θ3b¬i,g + εi1

)
(9)
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Discrete Choice

Utility

I Brock & Durlauf allow for arbitrary error distribution but to
keep things simple, we’ll assume that errors are distributed
iid Type 1 extreme value

f (εij) = e−εij ee−εij

F (εij) = ee−εij
(10)

I This leads to the beautiful Logit form for the probabilities of
choosing to protest:

Pr(yi = 1) =
exp

(
θ0 + θ1big + θ2s¬i,g + θ3b¬i,g

)
1 + exp

(
θ0 + θ1big + θ2s¬i,g + θ3b¬i,g

)
(11)
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Discrete Choice

Utility

I In our simple, two person world, we would then have:

s1g =
exp

(
θ0 + θ1b1g + θ2se

2g + θ3b2g

)
1 + exp

(
θ0 + θ1b1g + θ2se

2g + θ3b2g

)
s2g =

exp
(
θ0 + θ1b2g + θ2se

1g + θ3b1g

)
1 + exp

(
θ0 + θ1b2g + θ2se

1g + θ3b1g

)
(12)
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Discrete Choice

Key Point: Nonlinearity

I The discrete choice framework doesn’t allow one to
express mean endogenous peer effects as a linear
function of exogenous characteristics

I This is different from the linear framework in which
outcomes can be solved as a linear function of exogenous
characteristics

I This nonlinearity is what permits exogenous and
endogenous peer effects to be separately identified
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Discrete Choice

Key Point: Nonlinearity

I Intuitively suppose one moves an individual from one peer
group to another and observes the difference in her
behaviour

I If the characteristics and behaviour of peers always move
in proportion as you move across peer groups, then not
surprising that you can’t determine the respective roles of
characteristics as opposed to group behaviour in
determining individual outcomes

I However, with binary choice, the expected group behaviour
is bounded between 0 and 1 and thus choice probabilities
are inherently nonlinear in controls
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Discrete Choice

Key Point: Nonlinearity

I Proposition 12 in Brock & Durlauf (2001) proves this
formally

I Intuitively require the following:

I Data must have sufficient intra-neighbourhood variation in
individual exogenous characteristics for identification of θ1

I Require sufficient inter-neighbourhood variation in peer
group composition for the separate identification of θ2 and
θ3
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Discrete Choice

Proposition 12

I We first generalise our framework slightly to also allow for
individual characteristics (e.g. age, option choice &c), X ,
as well as (exogenous) peer effects, b, and also consider a
general specification for peer group behaviour, sg (with the
expectation given model parameters, mg)

sig =
exp

(
θ0 + θ1Xig + θ2sg + θ3bg

)
1 + exp

(
θ0 + θ1Xig + θ2sg + θ3bg

) (13)
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Discrete Choice

Proposition 12

I Identification: the model is identified if for all parameter
pairs (θ0, θ1, θ2, θ3) and

(
θ′0, θ

′
1, θ
′
2, θ
′
3
)
, if

θ0 + θ1Xig + θ2sg + θ3bg = θ′0 + θ′1Xig + θ′2sg + θ′3bg (14)

and
sg = mg

=

∫ ∫
yidF (yi |θ)dFX |bg

=

∫ ∫
yidF (yi |θ′)dFX |bg

(15)

then (θ0, θ1, θ2, θ3) =
(
θ′0, θ

′
1, θ
′
2, θ
′
3
)
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Discrete Choice

Identification Conditions
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Discrete Choice

Proposition 12

I Proof by contradiction, imagine that there does exist an
alternative such that on supp(X ,Y , sg), we have

(θ0 − θ′0) + (θ1 − θ′1)Xig + (θ2 − θ′2)sg + (θ3 − θ′3)bg = 0
(16)

with
sg = mg (17)
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Discrete Choice

Proposition 12

I However, it is the case that we can identify θ1 by condition
(iv)

I Within at least one neighbourhood g, Xi is of full rank

I There is sufficient variation in X within a peer group to
identify θ1

I Given identification of θ1, if θ2 6= θ′2, that sg is a linear
function of bg unless

I sg is always equal to zero: ruled out by assumption (vi)

I θ3 = θ′3
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Discrete Choice

Proposition 12

I However, linear dependence is ruled out by the differences
in the support of sg and bg

I By definition, sg ∈ [0,1] but from assumption (v), the
support of each element of bg is unbounded

I Thus, bg can assume values with positive probability that
violate the bounds on sg

I Thus θ2 is identified
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Discrete Choice

Proposition 12

I Finally, if θ1 and θ2 are identified, it must be the case that:

(θ3 − θ′3)bg = −(θ0 − θ′0) (18)

I Given that a constant is excluded from bg , this would again
violate the rank condition on bg imposed by Assumption 2

I Thus, θ1 = θ′1 and identification of θ0 follows
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Discrete Choice

Identification by Nonlinearity

I This is a specific example of the wider concept of
‘identification by nonlinearity’ or, more generally,
‘identification by functional form’

I You only get identification by assuming some functions in
the model have specific parametric or semi-parametric
forms.

I While relatively natural in the discrete choice case we just
considered, typically depends on strong modelling
assumptions that, if only just identified, are not testable —
thus generally thought to be undesirable

Abi Adams

TBEA



Discrete Choice

Nonlinearity and Local Identification

I That nonlinearities help identification is by no means a
general statement!

I The definition of identification laid out in the first lecture is
sometimes referred to as global identification

F S0
θ = F S

θ → S = S0 (19)

for any S ∈MΓ

I i.e. we can identify the unique S0 over the entire range of
possible values
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Discrete Choice

Nonlinearity and Local Identification

I Local identification is a weaker condirion that this

I S0 identified if we restrict attention only to structures in the
neighbourhood of the true value

F S0
θ = F S

θ → S = S0 (20)

for any S in some abritrarily small open neighbourhood of
S0

I Note that this is not ‘local’ in the sense of LATE
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Discrete Choice

Nonlinearity and Local Identification

I Suppose that m(X ) is a known continuous function, where
we know that m(θ) = 0

I 1. Assume that m(X ) is strictly monotonic.

I Then θ (if it exists) is globally identified

I Strict monotonicity ensures that only one value of θ can
satisfy the equation m(θ) = 0.
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Discrete Choice

Nonlinearity and Local Identification

I Suppose that m(X ) is a known continuous function, where
we know that m(θ) = 0

I 2. Assume that m(X ) is a J th order polynomial

I Then θ (if it exists) is not typically globally identified

I Up to J values of θ that can satisfy the equation m(θ) = 0

I However, we do have local identification — there will exist a
neighbourhood of Θ close to θ0 small enough to exclude all
other roots
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Discrete Choice

Nonlinearity and Local Identification

I Suppose that m(X ) is a known continuous function, where
we know that m(θ) = 0

I 2. Assume that m(X ) is continuous

I Then θ might not even be locally identified

I m(x) could equal zero for all values of x in some interval
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Discrete Choice

Nonlinearity and Local Identification

I Suppose that m(X ) is a known continuous function, where
we know that m(θ) = 0

I 2. Assume that m(X ) is continuous

I Then θ might not even be locally identified

I m(x) could equal zero for all values of x in some interval
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Discrete Choice

Conclusion

I Nonlinearities can sometimes aid identification

I However, with nonlinear models might have to weaken
identification concept to that of local identification

I To finish, I will run through the technical material that you
need to have mastered before the exam
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